Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly
نویسندگان
چکیده
During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
منابع مشابه
The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores fro...
متن کاملThe molecular function of Ase1p
The midzone is the domain of the mitotic spindle that maintains spindle bipolarity during anaphase and generates forces required for spindle elongation (anaphase B). Although there is a clear role for microtubule (MT) motor proteins at the spindle midzone, less is known about how microtubule-associated proteins (MAPs) contribute to midzone organization and function. Here, we report that budding...
متن کاملIntegrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involve...
متن کاملSpatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), R...
متن کاملSpindle assembly requires complete disassembly of spindle remnants from the previous cell cycle
Incomplete mitotic spindle disassembly causes lethality in budding yeast. To determine why spindle disassembly is required for cell viability, we used live-cell microscopy to analyze a double mutant strain containing a conditional mutant and a deletion mutant compromised for the kinesin-8 and anaphase-promoting complex-driven spindle-disassembly pathways (td-kip3 and doc1Δ, respectively). Under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 209 شماره
صفحات -
تاریخ انتشار 2015